
f

Parallel Conjugate Gradient: Effects of Ordering Strategies,

Programming Paradigms, and Architectural Platforms

LEONID OLIKER AND XIAOYE LI

.VERSC, MS 5OF, Lawrence Berkeley National Laboratory. Berkeley, CA 94720

GERD HEBER

Cornell Theory Center. 638 Rhodes Hall, Cornell University, Ithaca, NY 14853

RUPAK B ISWAS

MRJ Technology Solutions, MS T27A-1, NASA Ames Research Center, Moffett Field, CA 94035

Abstract

The Conjugate Gradient (CG) algorithm is perhaps the best-known iterative technique to solve

sparse linear systems that are symmetric and positive definite. A sparse matrix-vector multiply

(SPMV) usually accounts for most of the floating-point operations within a CG iteration. In this

paper, we investigate the effects of various ordering and partitioning strategies on the performance

of parallel CG and SPMV using different programming paradigms and architectures. Results show

that for this class of applications, ordering significantly improves overall performance, that cache

reuse may be more important than reducing communication, and that it is possible to achieve

message passing performance using shared memory constructs through careful data ordering and

distribution. However, a multithreaded implementation of CG on the Tera MTA does not require

special ordering or partitioning to obtain high efficiency and scalability.

Keywords: Ordering algorithms, unstructured meshes, sparse matrices, distributed and shared

memory, multithreading

1 Introduction

The ability of computers to solve hitherto intractable problems and simulate complex processes

using mathematical models makes them an indispensable part of modern science and engineering.

Computer simulations of large-scale realistic applications usually require solving a set of non-linear

partial differential equations (PDEs) over a finite region. Structured grids are the most natural

way to discretizesucha computationaldomain; however,complicateddomainsmust often be

dividedinto multiplestructuredgridsto becompletelydiscretized,requiringagreatdealof human

intervention. Unstructuredmeshes,by contrast,canbe generatedautomaticallyfor applications

with complexgeometriesor thosewith dynamicallymovingboundaries(but at the costof higher

storagerequirementsto explicitly storethe connectivityinformationfor everypoint in the mesh).

They also facilitate dynamicgrid adaptationto efficientlysolveproblemswith evolvingphysical

featuressuchasshockwaves,vortices,detonations,shearlayers,and crackpropagation.

Theprocessof obtainingnumericalsolutionsto thegoverningPDEsrequiressolvinglargesparse

linearsystemsor eigensystemsdefinedoverthe unstructuredmeshesthat modelthe underlying

physicalobjects. The ConjugateGradient(CG) algorithm is perhapsthe best-knowniterative

techniqueto solvesparselinear systemsthat aresymmetricand positivedefinite. Within each

iteration of CG, the sparse matrix vector multiply (SPMV) is usually the most expensive operation.

On uniprocessor machines, numerical solutions of such complex, real-life problems can be ex-

tremely time consuming, a fact driving the development of increasingly powerful parallel multi-

processor supercomputers. The unstructured, dynamic nature of many systems worth simulating,

however, makes their efficient parallel implementation a daunting task. This is primarily due to

the load imbalance created by the dynamically changing nonuniform grids and the irregular data

access patterns. These cause significant communication at runtime, leaving many processors idle

and adversely affecting the total execution time.

Furthermore, modern computer architectures, based on deep memory hierarchies, show accept-

able performance only if users care about the proper distribution'and placement of their data [2].

Single-processor performance crucially depends on the exploitation of locality, and parallel per-

formance degrades significantly if inadequate partitioning of data causes excessive communication

and/or data migration. The traditional approach would be to use a sophisticated partitioning algo-

rithm, and then to post-process the resulting partitions with an enumeration strategy for enhanced

locality. Although, in that sense, optimizations for partitioning and locality may be treated as

separate problems, real applications tend to show a rather intricate interplay of both.

In this paper, we investigate the effects of various ordering and partitioning strategies on the

performance of CG and SPMV using different programming paradigms and architectures. In par-

ticular, we use the reverse Cuthill-McKee [3] and the self-avoiding walks [5] ordering strategies, and

the METIS [7] partitioner. We examine parallel implementations of CG using MPI, shared-memory

compiler directives, and multithreading, on three state-of-the-art parallel supercomputers: a Cray

T3E, anSGI Origin2000,and a TeraMTA. Resultsshowthat orderingimprovesperformancesig-

nificantly, and that cachereusecanbemoreimportant than reducingcommunication.However,

the multithreadedimplementationdoesnot requireany specialorderingor partitioning to obtain

highefficiencyandscalabflity.

2 Partitioning and Linearization

Space-filling curves have been demonstrated to be an elegant and unified linearization approach

for certain problems in N-body and FEM simulations, mesh partitioning, and other graph-related

areas [4, 8, 9, 10, 12]. The linearization of a higher-dimensional spatial structure, i.e. its mapping

onto a one-dimensional structure, is exploited in two ways: First, the locality preserving nature

of the construction fits elegantly into a given memory hierarchy, and second, the partitioning of

a contiguous linear object is trivial. For our experiments, we pursued both strategies with some

modifications. In the following, we briefly describe the two classes of enumeration techniques and

the general-purpose graph partitioner which were used.

2.1 Cuthill-McKee Algorithms (CM)

The particular enumeration of the vertices in a FEM discretization controls, to a large extent, the

sparseness pattern of the resulting stiffness matrix. The bandwidth, or profile, of the matrix has

a significant impact on the efficiency of linear systems and eigensolvers. Cuthill and McKee [3]

suggested a simple algorithm based on ideas from graph theory. Starting from a vertex of minimal

degree, levels of increasing distance from that vertex are first constructed. The enumeration is then

performed level-by'level with increasing vertex degree (within each level). Several variations of this

method have been suggested, the most popular being reverse Cuthill-McKee (RCM) where the level

construction is restarted from a vertex of minimal degree in the final level. In many cases, it has

been shown_that RCM improves the profile of the resulting matrix. The class of CM algorithms

are fairly straightforward to implement and largely benefit by operating on a pure graph structure,

i.e. the underlying graph is not necessarily derived from a triangular mesh.

2.2 Self-Avoiding Walks (SAW)

These were proposed recently [5] as a mesh-based (as opposed to geometry-based) technique with

similar application areas as space-filling curves. A SAW over a triangular mesh is an enumeration

of the trianglessuchthat two consecutivetriangles(in the SAW)sharean edgeor a vertex,i.e.

therearenojumps in the SAW.It can be shown that walks with more specialized properties exist

over arbitrary unstructured meshes, and that there is an algorithm for their construction whose

complexity is linear in the number of triangles in the mesh. Furthermore, SAWs are amenable

to hierarchical coarsening and refinement, i.e. they have to be rebuilt only in regions where mesh

adaptation occurs, and can therefore be easily parallelized. SAW, unlike CM, is not a technique

designed specifically for vertex enumeration; thus, it cannot operate on the bare graph structure of

a triangular mesh. This implies a higher construction cost for SAWs, but several different vertex

enumerations can be derived from a given SAW.

2.3 Graph Partitioning (e.g. METIS)

Some excellent parallel graph partitioning algorithms have been developed and implemented in

the last decade that are extremely fast while giving good load balance quality and low edge cuts.

Perhaps the most popular is METIS [7] that belongs to the class of multilevel partitioners. METIS

reduces the size of the graph by collapsing vertices and edges using a heavy edge matching scheme,

applies a greedy graph growing algorithm for partitioning the coarsest graph, and then uncoarsens

it back using a combination of boundary greedy and Kernighan-Lin refinement to construct a

partitioning for the original graph. Partitioners strive to balance the computational workload

among processors while reducing interprocessor communication. Improving cache performance is

not a typical objective of most partitioning algorithms.

3 Sparse Matrix-Vector Multiplication and Conjugate Gradient

Sparse matrix-vector multiplication (SPMV) is one of the most heavily-used kernels in large-scale

numerical simulations. To perform a SPMV, y +- Ax, we assume that the nonzeros of matrix A are

stored in the Compressed Row Storage (CRS) format [1]. The dense vector x is stored sequentially

in memory with unit stride. Various numberings of the mesh elements/vertices result in different

nonzero patterns of A, which in turn cause different access patterns for the entries of x. Moreover,

on a distributed-memory machine, they imply different amounts of communication.

The Conjugate Gradient (CG) algorithm is the oldest and best-known Krylov subspace method

used to solve the linear system Ax = b. The method starts from an initial guess of the vector z.

It then successively generates approximate solutions in the Krylov subspace, and search directions

Computero = Po = b - Axo for some initial guess x0

for j = 0. I , until convergence

aj = (ri, rj)/(Api,p_)

x:+l = xj + _jp)

rj+l = rj -- 0 3Apj

Z: =

Pj+I = rj+l + _jPj

endfor

Figure 1: The Conjugate Gradient algorithm.

used in updating the approximate solution and residual. The algorithm [11] is outlined in Figure 1.

Each iteration of CG involves one SPMV for Apj, three vector updates (AXPY) for xj+l, rj+l, and

pj+l, and three inner products (DOT) for the update scalars aj and/3j which make the generated

sequences satisfy certain orthogonality conditions. For a symmetric and positive definite linear

system, these conditions imply that the distance between the approximate solution and the true

solution is minimized.

Suppose the matrix A is of order n and has nnz nonzeros. Then, one SPMV involves O(nnz)

floating-point operations, while AXPY and DOT involve only O(n) floating-point operations. Thus,

for many practical matrices, SPMV dominates the other two operations. This is demonstrated by

the results given in Section 4. Note that both AXPY and DOT axe insensitive to mesh orderings.

4 Experimental Results

Our experimental test mesh consists of a two-dimensional Delaunay triangulation, generated by

the Triangle [13] software package. The mesh is shaped like the letter "A", and contains 661,054

vertices and 1,313,099 triangles. The underlying matrix was assembled by assigning a random value

in (0, 1) to each (i, j) entry corresponding to the vertex pair (v_, vj), where 1 _< distance(v1, vj) <_ 3.

All other off-diagonal entries were set to zero. This simulates a stencil computation where each

vertex needs to communicate with its neighbors that are no more than three edge lengths away. The

matrix is symmetric with its diagonal entries set to 40, which makes it diagonally dominant (and

hence positive definite). This ensures that the CG algorithm converges successfully. The final sparse

matrix A has approximately 39 entries per row and a total of 25,753,034 nonzeros. This sparsity

pattern is representative of the matrices obtained from discretizing PDEs on three-dimensional

meshes. The CG algorithm converges in 13 iterations, with the unit vector as the right-hand side b

and the zero vector as the initial guess for x. For our test matrix, the SPMV computation accounts

for approximately 87% of the total number of floating-point operations within each CG iteration.

4.1 Distributed-NIemory Implementation

In our experiments, we use the parallel SPMV and CG routines in Aztec [6], implemented using

MPI. The matrix A is partitioned into blocks of rows, with each block assigned to one processor.

The associated components of vectors x and b are distributed accordingly. Communication may be

needed to transfer some components of x. For example, in y e-- Ax, if yi is updated on processor pl,

Aij 7_ O, and x) is owned by processor p_, then P'2 must send xj to pl- In general, a processor may

need more than one x-component from another processor. It is thus more efficient to combine

several x-components into one message so that each processor sends no more than one message to

another processor. This type of optimization can be performed in a pre-processing phase. The other

two operations, AXPY and DOT in the CG algorithm, are easily parallelized -- AXPY requires

only local computations, whereas DOT requires a local sum followed by a global sum reduction.

Three routines within Aztec are of particular interest to us: AZ_transform, which initializes

the data structures and the communication schedule for SPMV, AZ_matvec_mult, which performs

the matrix-vector multiply, and AZ_cg, which solves a linear system using the CG algorithm. In

Table 1, we report the runtimes of the AZ.matvec_mult and AZ_eg routines on the Cray T3E at

NERSC. Each T3E node consists of a 450 MHz DEC Alpha processor (900 Mflops peak theoretical

floating-point speed), 96 KB secondary cache, and is interconnected to other nodes through a 3D

ORIG

P SPMV CG

8 0.5622 8.6519

16 0.3252 5.0929

32 0.1990 3.1667

64 0.1191 1.9287

METIS

SPMV CG

0.4758 7.6617

0.2682 2.9092

0.0870 1.4677

0.0559 0.9614

RCM

SPMV CG

0.3812 6.1853

0.1927 3.1979

0.0951 1.6615

0.0451 0.8816

SAW

SPMV CG

0.1708 2.9158

0.0861 1.4912

0.0442 0.7948

0.0283 0.4616

Table 1: Runtimes (in seconds) of AZ_matvec.mult (SPMV) and AZ_cg (CG) using different order-

ings on the Cray T3E.

torus. It wasnot possibleto run our test problemon lessthan 8 processorsof the T3E due to

memoryconstraints.

For the key kernel routine AZ_matvec_mult,SAWis alwaysabout twiceas fast asRCM. In

turn, RCM is about 1.5times fasterthanMETIS on 16or fewerprocessors,and about the same

on 32 or moreprocessors.Note that whenusing32 or moreprocessors,METIS is twiceas fast

as ORIG (the natural ordering from Triangle). For AZ_cg,SAWis againabout twiceas fast as

RCM. However.wedo not seea clearadvantageof RCM overMETIS for this routine. Both RCM

and METIS are twiceasfastasORIG on largenumberof processors.Finally, METIS, RCM, and

SAW,all demonstrateexcellentscalability(morethan 75%efficiency)up to the 64processorsthat

wereusedfor theseexperiments,but ORIG seemslessscalable(only about 56%efficiency).As

expected,there is a strongcorrelationbetweenthe performanceof CG and the underlyingSPMV

for all test cases.

Table2 showsthe pre-processingtimesspentin AZ_transform.The timesfor METIS, RCM,

and SAWarecomparable,and are usuallyan orderof magnitudelarger than the corresponding

timesfor AZ_matvec_mult,The AZ_transformtimesshowsomescalabilityup to 32 processors.

However,for OR/G, the times are two to threeordersof magnitudelarger,and showvery little

scalability.Clearly,the ORIG orderingis too inefficientand unacceptableon distributed-memory

machines.

P

8
16

32

64

ORIG METIS

504.2407 2.8290

547.9423 1.4553

333.6689 0.8403

150.00720.4224

RCM SAW

2.3703 2.0227

1.3299 1.1568

0.8640 0.8041
0.7763 0.5368

Table2: Runtimes(in seconds)of hZ_transform using different orderings on the Cray T3E.

To better understand the various partitioning and ordering algorithms, we have built a simple

performance model to predict the parallel runtime of AZ_matvec_mult. First, using the T3E's

hardware performance monitor, we collected the average number of cache misses per processor.

This is reported in Table 3, and shows that SAW has the fewest number of cache misses. In

comparison, RCM, METIS, and ORIG have between two and three times that number. Second, we

gathered statistics on the average communication volume and the maximum number of messages

per processor, both of which are also shown in Table 3. Notice that METIS transfers the least

7

P

8

16

32

64

Avg. Cache Misses (106)

ORIG METIS RCM i SAW

3.6842 3.0340 3.7490

2.0072 1.3305 1.9049

1.0597 0.6576 1.0172

0.6011 0.3581 0.5150

2.0042

0.9706

0.5073

_ 0.2900
i

Avg. Communication (106 bytes)

ORIG

3.2275

2.3643

1.4918

0.8285

METIS RCM SAW

0.0107 0.0308 0.0488

0.0108 0.0315 0.0362

0.0092 0.0316 0.0302

0.0079 0.0316 0.0229

Max. Message Count

ORIG METIS RCM SAW

7 3 2 6

15 4 2 9

31 5 2 11

63 6 2 16

Table 3: Locality and communication statistics for AZ_matvec_mult.

amount of data, whereas RCM has the fewest number of messages.

In our model, we estimate the total parallel runtime T as

T=T/+T.,+Tc,

where, T/, Tin, and Tc are the estimated per-processor times to perform floating-point operations, to

service the cache misses, and to communicate the x vector. Given that a floating-point operation

requires 1/900 microseconds and that each cache miss latency is 0.08 microseconds (both from

product documentation), and assuming that the MPI bandwidth and latency axe 50 MB/second

and 10 microseconds (both from measurement), respectively, we can estimate the total runtime

based on the information in Table 3.

ORIG

P T (deviation) Tm/T Tc/T

8 0.3666 (-35%) 0.80 0.18

16 0.2117 (-35%) 0.76 0.22

32 0.1170 (-41%) 0.72 0.26

64 0.0667 (-44%) 0.72 0.27

RCIVI

METIS

T (deviation)

0.2501 (-47%)

0.1103 (-58%)

0.0547 (-37%)

0.0298 (-46%)

T /T

0.97

0.96

0.96

0.96

SAW

P T (deviation) Tm/T Tc/T

8 0.3077 (-19%) 0.97 0.00

16 0.1566 (-19%) 0.97 0.00

32 0.0838 (-12%) 0.97 0.01

64 0.0428 (-5%) 0.96 0.02

T (deviation)

0.1686 (-1%)

0.0821 (-5%)

0.0432 (-2%)

0.0248 (-12%)

Tc/T

0.00

0.00

0.01

0.01

Table 4: Predicted runtimes for AZ_matvec:mult on the T3E. In the column of total time T, the

percentage deviation from the measured time is given in parenthesis.

T /T Tc/T

0.95 0.01

0.94 0.01

O.94 O.O2

0.93 0.03

Table 4 shows the predicted total time T, and the ratios Tm/T and Tc/T. In parenthesis,

we also give the percentage deviation of the predicted time from the measured runtime (that are

reported in Table 1). The maximum deviation from the measured runtimes is -58%, which gives

us a fair degree of confidence in our model. The results in Table 4 clearly indicate that servicing

the cache misses is extremely expensive and requires more than 93% of the total time for METIS,

RCM, and SAW, and 72-80% for ORIG (which has relatively more communication). Although

SAW and RCM both incur more communication than METIS (in terms of the average message

volume as shown in Table 3), their total runtimes are significantly less. This illustrates that for our

combination of applications and architectures, improving cache reuse can be more important than

reducing interprocessor communication.

4.2 Shared-Memory Implementation

The shared-memory version of CG was implemented on the Origin2000, which is a SMP cluster of

nodes each containing two 250 MHz MIPS R10000 processors and local memory. The hardware

makes all memory equally accessible from a software standpoint, by sending memory requests

through routers located on the nodes. Access time to memory is nonuniform, depending on how

far away the memory lies from the processor. The topology of the interconnection network is

a hypercube, bounding the maximum number of memory hops to a logarithmic function of the

number of processors. Each processor also has a relatively large 4 MB secondary cache, where only

it can fetch and store data. If a processor refers to data that is not in cache, there is a delay while

a copy of the data is fetched from memory. When a processor modifies a word of data, all other

copies of the cache line containing that word are invalidated.

This version of the parallel CG code was written using SGI's native pragma directives, which

create IRIX threads. A rewrite to OpenMP would require minimal programming effort but has

not been done at this time. Each processor is assigned an equal number of rows in the matrix.

The parallel SPMV and AXPY routines do not require explicit synchronizations, since they do not

contain concurrent writes. Global reduction operations are required for DOT and the convergence

tests. Two basic implementation approaches described below were taken.

The SHMEM strategy naively assumes that the Origin2000 is a flat shared-memory machine.

Arrays are not explicitly distributed among the processors, and nonlocal data requests are handled

by the cache coherent hardware. Alternatively, the CC-NUMA strategy addresses the underlying

distributed-memory nature of the machine by performing an initial data distribution. Sections of the

9

sparse matrix are appropriately mapped onto the memories of their corresponding processors using

the default "first touch" data distribution policy of the Origin2000. The computational kernels of

both the SHMEM and CC-NU._!A implementations are identical, and simpler to implement than

the MPI version. Table 5 shows the SPMV and CG runtimes using both approaches with the

ORIG, RCM, and SAW orderings of the mesh. We also present the runtime of CG using an MPI

implementation on the Origin2000 with the SAW ordering, as a basis for comparison.

P

1

2

4

8

16

32

64

SHMEM

ORIG

SPMV CG

2.224 46.911

1.249 28.055

1.425 30.637

0.922 16.836

1.047 16.348

1.072 16.653

0.747 10.809

RCM

SPMV CG

1.489 37.183

0.852 21.867

0.935 25.350

0.572 14.431

O.635 15.516

0.664 15.350

0.323 7.782
i.

CC-NUMA

ORIG

P SPMV CG

1 2.224 46.911

2 1.218 27.053

4 0.879 17.608

8 0.535 9.824

16 0.326 6.205

32 0.197 3.584

64 0.118 2.365

SAW

SPMV CG

1.460 36.791

0.831 21.772

0.915 24.751

0.572 14.121

O.645 15.548

0.641 15.423

0.324 8.45O
,o

RCM

SPMV CG

1.489 37.183

0.851 21.454

0.421 10.651

0.220 5.575

0.115 2.845

0.061 1.548

0.028 0.885

Table 5: Runtimes (in seconds) for different orderings

on the SGI Origin2000. The CG runtimes for an MPI

SAW ordering is also given for comparison.

SAW

SPMV CG

1.460 36.791

0.829 21.229

0.410 10.593

0.216 5.516

0.113 2.872

0.060 1.514

0.026 0.848

MPI

SAW

CG

23.145

7.880

3.815

1.926

1.075

0.905

running in SHMEM and CC-NUMA modes

implementation on the Origin2000 with the

Notice that the CC-NUMA implementation shows significant performance gains over SHMEM.

This is expected since the Origin2000 is a distributed-memory system, and therefore should be

treated as such. As the number of processors increases, the runtime difference between the two

10

approaches becomes more dramatic, achieving an order of magnitude improvement when using more

than 16 processors. Proper data distribution becomes increasingly important for larger numbers

of processors since the corresponding communication overhead grows nonuniformly. Within the

CC-NUMA approach, the RCM and SAW ordering schemes dramatically reduce the runtimes

compared to ORIG, indicating that an intelligent ordering algorithm is necessary to achieve good

performance and scalability on distributed shared-memory systems. There is little difference in

parallel performance between RCM and SAW because both ordering techniques reduce the number

of secondary cache misses and the non-local memory references of the processors. Recall however

that on the T3E, SAW was about twice as fast as RCM. This discrepancy in performance is probably

due to the larger cache size of the Origin2000 that reduces the beneficial effects of smart ordering.

The last two columns of Table 5 compare the CC-NUMA and MPI implementations of CG on

the Origin2000 using the SAW ordering. Notice that the runtimes are very similar, even though

the programming methodologies of these two approaches are quite different. These results indicate

that for this class of applications, it is possible to achieve message passing performance using shared

memory constructs, through careful data ordering and distribution.

4.3 Multithreaded Implementation

The Tera MTA is a supercomputer recently installed at the San Diego Supercomputing Center

(SDSC). The MTA has a radically different architecture than current high-performance computer

systems. Each 255 MHz processor has support for 128 hardware streams, where each stream

includes a program counter and a set of 32 registers. One program thread can be assigned to each

stream. The processor switches among the active streams at every clock tick, while executing a

pipelined instruction.

The uniform shared memory of the MTA is flat, and physically distributed across hundreds of

banks that are connected through a 3D toroidal network to the processors. All memory addresses are

hashed by the hardware so that apparently adjacent words are actually distributed across different

memory banks. Because of the hashing scheme, it is impossible for the programmer to control

data placement. This enhances programmability compared to standard cache-based multiprocessor

systems. Rather than using data caches to hide latency, the MTA processors use multithreading to

tolerate latency. If a thread is waiting for its memory reference to complete, the processor executes

instructions from other threads. Performance thus depends on having a large number of concurrent

computation threads.

11

4

Lightweight synchronization among threads is provided by the memory itself. Each word of

physical memory contains a full-empty bit, which enables fast synchronization via load and store

instructions without operating system intervention. Synchronization among threads may stall one

of the threads, but not the processor on which the threads are running, since each processor may

run many threads. Explicit load balancing across loops is also not required since the dynamic

scheduling of work to threads provides the ability of keeping the processors saturated, even if

different iterations require varying amounts of time to complete. Once a code has been written

in the multithreaded model, no additional work is required to run it on multiple processors, since

there is no difference between uni- and multiprocessor parallelism.

The multithreaded implementation of CG is trivial, requiring only MTA compiler directives.

Since the data structures are dynamically allocated pointers, special pragma assertions were used to

indicate that there are no loop-carried dependencies. The compiler was thus able to automatically

parallelize the appropriate loop segments. Load balancing is implicitly handled by the operating

system which dynamically assigns rows to threads. The reduction operations for DOT and the

convergence test were handled automatically as well. Otherwise, special synchronization constructs

were not required since there are no other possible race conditions in the multithreaded CG. It is

important to highlight that no special ordering was necessary to achieve parallel performance.

Results using 60 streams per processor are presented in Table 6. Notice that both CG and

the underlying SPMV achieve high scalabiiity of over 90%. This indicates that there is enough

instruction level parallelism in CG to tolerate the relatively high overhead of memory access. There

is a Slight drop in performance between four and eight processors. As we increase the number of

processors, the number of active threads increase proportionately while the runtimes become very

small. As a result, a greater percentage of the overall time is spent on thread management, causing

a decrease in efficiency. We look forward to continuing our experiments as more processors become

ORIG

1Cc
I 0.378 9.86

2 0.189 5.02

4 0.095 2.53

8 0.051 1.35

Table 6: Runtimes (in seconds) for the original ordering on the Tera MTA.

12

availableon the TeraMTA.....

5 Summary and Future Work

In this paper, we examined three different parallel implementations of the Conjugate Gradient

(CG) algorithm using three leading programming paradigms and architectures. The MPI version

of the code on the T3E uses the Aztec [6] library, where we compared the parallel performance of

ordering the sparse matrix using reverse Cuthill-McKee (RCM) [3], self-avoiding walk (SAW) [5],

and the METIS partitioner [7]. Results showed that all three schemes greatly improve the par-

allel performance of CG compared to the naive natural ordering. In addition, we demonstrated

that traditional graph partitioners, which focus on minimizing edge cuts, are not necessarily the

best tools for partitioning sparse matrices on multiprocessor systems. Using RCM or SAW as an

ordering/partitioning strategy results in a faster CG than METIS, due to better cache reuse. A

performance model was also presented which predicts the expected sparse matrix-vector multiply

(SPMV) runtime as a function of both cache misses and communication overhead. Within each

CG iteration, the SPMV is usually the most expensive operation.

A shared memory implementation of CG on the Origin2000 showed that ordering algorithms

dramatically improve parallel performance. This is because the Origin2000 is a distributed-memory

architecture, so proper data distribution is required even when programming in shared memory

mode. A direct comparison with an MPI implementation indicated that it is possible to achieve

message passing performance using shared memory constructs for this class of applications through

careful data ordering and distribution. Finally, results of a multithreaded implementation of CG

on the Tera MTA indicated that special ordering and/or partitioning schemes are not required on

the MTA to obtain high efficiency and scalability.

We plan to port the distributed-memory implementation of CG onto the newly installed RS/6000

SP machine'at NERSC. This system consists of 256 two-CPU SMP nodes, and is the first commer-

cial implementation of the POWER3 microprocessor. In addition, we will examine the effects of

partitioning the sparse matrix using METIS, and subsequently performing RCM or SAW orderings

on each subdomain. Combining both schemes should minimize interprocessor communication and

significantly improve data locality. Future research will focus on evaluating the effectiveness of the

parallel Jacobi-Davidson eigensolver, when various orderings are applied to the underlying sparse

matrix. A multithreaded version of the Jacobi-Davidson algorithm will be implemented on the Tera

13

" 9 _ •

MTA. We also intend to extend the SAW algorithm to three dimensions and modify it to efficiently

handle adaptively refined meshes in a parallel environment.

Acknowledgements

The work of the first two authors was supported by Director, Office of Computational and Tech-

nology Research, Division of Mathematical, Information, and Computational Sciences of the U.S.

Department of Energy under contract number DE-AC03-76SF00098. The work of the third author

was partially supported by the National Science Foundation under grant numbers NSF-CISE-

9726388 and NSF-MIPS-9707125 while the author was at the University of Delaware. The work of

the fourth author was supported by National Aeronautics and Space Administration under contract

number NAS 2-14303 with MRJ Technology Solutions.

References

[1] R. Barrett, M. Berry, T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,

C. Romine, and H. van der Vorst. Templates ,for the solution of linear systems: Building blocks

.for the iterative methods. SIAM, Philadelphia, 1994.

[2] D.A. Burgess and M.B. Giles. Renumbering unstructured grids to improve the performance of

codes on hierarchical memory machines. Advances in Engineering Software, 28:189-201, 1997.

[3] E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices. In Proc.

ACM National Conference, pages 157-172, New York, 1969.

[4] M. Griebel and G. Zumbusch. Hash-storage techniques for adaptive multilevel solvers and their

domain decomposition parallelization. AMS Contemporary Mathematics Series, 218:279-286,

1998.

[5] G. Heber, R. Biswas, and G.R. Gao. Self-avoiding walks over adaptive unstructured grids.

In Parallel and Distributed Processing (LNCS 1586), pages 968-977. Springer-Verlag, Berlin,

1999.

[6] S.A. Hutchinson, L.V. Prevost, J.N. Shadid, and R.S. Tuminaro. Aztec User's Guide, Version

2.0 Beta. Technical Report SAND95-1559, Sandia National Laboratories, Albuquerque, 1998.

14

[7] G.Karypis andV. Kumar. A fastandhigh qualitymultilevelschemefor partitioning irregular

graphs.SIAM J. Scientific and Statistical Computing, 20:359-392, 1998.

[8] C.-W. Ou, S. Ranka. and G. Fox. Fast and parallel mapping algorithms for irregular problems.

J. of Supercomputing, 10:119-140, 1995.

[9] M. Parashar and J.C. Browne. On partitioning dynamic adaptive grid hierarchies. In Proc.

_9th Hawaii International Conference on System Sciences, pages 604-613, Maui, 1996.

[10] J.R. Pilkington and S.B. Baden. Dynamic partitioning of non-uniform structured workloads

with space-filling curves. IEEE Trans. on Parallel and Distributed Systems, 7:288-300, 1996.

[11] Y. Sam:l. Iterative methods for sparse linear systems. PWS Publishing Company, Boston, 1996.

[12] J. Salmon and M.S. Warren. Parallel, out-of-core methods for fast evaluation of long-range

interactions. In Proc. 8th SIAM Conference on Parallel Processing for Scientific Computing,

Minneapolis, 1997.

[13] J.R. Shewchuk. Triangle: Engineering a 2D quality mesh generator and delaunay triangulator.

In Applied Computational Geometry: Towards Geometric Engineering (LNCS 1138), pages

203-222. Springer-Verlag, New York, 1996.

15

